**Tin Perkov**

Faculty of Teacher Education, Chair of Mathematics and Statistics

Savska cesta 77, HR-10000 Zagreb

e-mail: tin.perkov[at]ufzg.hr

**Research interests**

interests: modal logic, model theory, modal definability, correspondence theory

**Papers**

1. Towards a generalization of modal definability, in: D. Lassiter, M. Slavkovik (eds.): *New Directions in Logic, Language, and Computation*, Springer, 2012.

2. (with M. Vuković) Some characterization and preservation theorems in modal logic, *Annals of Pure and Applied Logic* 163 (2012) 1928-1939.

3. Tableau-based bisimulation invariance testing, *Reports on Mathematical Logic* 48 (2013) 101-115.

4. A generalization of modal frame definability, in: M. Colinet et al. (eds.): *Pristine Perspectives on Logic, Language, and Computation*, Springer, 2014.

5. A 4-valued framework encompassing intuitionistic and classical logic, *Journal of Applied Non-Classical Logics* 24 (2014) 138-143.

6. (with M. Vuković) A bisimulation characterization for interpretability logic, *Logic Journal of the IGPL* 22 (2014) 872-879.

7. (with M. Vuković) Filtrations of generalized Veltman models, *Mathematical Logic Quarterly* 62 (2016) 412-419.

8. Natural deduction for modal logic of judgment aggregation, *Journal of Logic, Language and Information* 25 (2016) 335-354.

9. (with L. Mikec, M. Vuković) Decidability of interpretability logics ILM_{0} i ILW*, *Logic Journal of the IGPL* 25 (2017) 758-772.

10. Abstract logical constants, *Logica Universalis* 12 (2018) 341-350.

11. The McCulloch-Pitts paper from the perspective of mathematical logic, in: S. Skansi (ed.): *Guide to Deep Learning Basics. Logical, Historical and Philosophical Perspectives*, Springer, 2020.

12. (with L. Mikec) Existential definability of modal frame classes, *Mathematical Logic Quarterly* 66 (2020) 316-325.

13. A note on logicality of generalized quantifiers, *Logica Universalis* 15 (2021) 149-152.

14. (with L. Mikec) Tableau-based translation from first-order logic to modal logic, *Reports on Mathematical Logic* 56 (2021) 57-74.

15. (with S. Horvat, M. Vuković) Bisimulations and bisimulation games between Verbrugge models, *Mathematical Logic Quarterly* 69 (2023) 231-243.

16. Bisimulations between Verbrugge models and Veltman models, in: H.H. Hansen et al. (eds.): *Proceedings of 29th International Workshop on Logic, Language, Information, and Computation* (WoLLIC), Springer, 2023.

17. (with S. Horvat) Selection method for interpretability logic IL with respect to Verbrugge semantics, *Rad HAZU, Matematičke znanosti* (2023) to appear